On denoising and best signal representation

نویسندگان

  • Hamid Krim
  • Dewey Tucker
  • Stéphane Mallat
  • David L. Donoho
چکیده

We propose a best basis algorithm for signal enhancement in white Gaussian noise. The best basis search is performed in families of orthonormal bases constructed with wavelet packets or local cosine bases. We base our search for the “best” basis on a criterion of minimal reconstruction error of the underlying signal. This approach is intuitively appealing because the enhanced or estimated signal has an associated measure of performance, namely, the resulting mean-square error. Previous approaches in this framework have focused on obtaining the most “compact” signal representations, which consequently contribute to effective denoising. These approaches, however, do not possess the inherent measure of performance which our algorithm provides. We first propose an estimator of the mean-square error, based on a heuristic argument and subsequently compare the reconstruction performance based upon it to that based on the Stein unbiased risk estimator. We compare the two proposed estimators by providing both qualitative and quantitative analyses of the bias term. Having two estimators of the mean-square error, we incorporate these cost functions into the search for the “best” basis, and subsequently provide a substantiating example to demonstrate their performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

On Denoising and Signal Representation

The problem of signal denoising using an orthogonal basis is considered. The framework of previous solutions converts the denoising problem into one of finding a threshold for estimates of basis coefficients. In this paper a new solution to the denoising problem is proposed. The method is based on calculation of the coefficient estimation error in each subspace of the basis. For each subspace, ...

متن کامل

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Can Wavelet Denoising Improve Motor Unit Potential Template Estimation?

Background: Electromyographic (EMG) signals obtained from a contracted muscle contain valuable information on its activity and health status. Much of this information lies in motor unit potentials (MUPs) of its motor units (MUs), collected during the muscle contraction. Hence, accurate estimation of a MUP template for each MU is crucial. Objective: To investigate the possibility of improv...

متن کامل

An Efficient Method for Knock Signal Denoising in Spark Ignition Engine

One of the factors that affects the efficiency and lifetime of spark ignited internal combustion engine is “knock”. Knock sensor is a commonly used to detect this phenomenon. However, noise, limits detection accuracy of this sensor. In this study, Empirical Mode Decomposition (EMD) method is introduced as a fully adaptive signal-based analysis. Then, based on weighting decomposition...

متن کامل

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999